
6.2 Volumes 
 

When finding the volume of a solid we have the same problem as we had when finding the areas in the 

last section. 

 

Consider the following solid, S. 

 
We can find the volume of the solid by finding the area of the cross section of S  in the plane Px  

perpendicular to the x-axis and passing through point x for all x in [a, b].  Notice that the corss-section 

area A(x) will vary as x increases from a to b.  Since A(x)  will vary, lets divide S  into n  “slabs” of equal 

width ∆𝒙 by using the planes 𝑃𝑥1
, 𝑃𝑥2

, …  to slice the solid.  If we choose sample point 𝒙𝒊
∗ in [𝑥𝑖−1, 𝑥𝑖], the 𝒊𝒕𝒉 

interval, we can approximate the 𝒊𝒕𝒉 slab, 𝑺𝒊 by a cylinder with base area 𝑨(𝒙𝒊
∗) and height  ∆𝒙. 

 

The volume of this cylinder is 𝑨(𝒙𝒊
∗)∆𝒙 …   𝑽(𝑺𝒊) ≈  𝑨(𝒙𝒊

∗)∆𝒙  

Adding the volumes of all of the slabs give us an approximation to the total volume of the solid. 

𝑽 ≈ ∑ 𝑨(𝒙𝒊
∗)∆𝒙 

𝒏

𝒊=𝟏

 

The approximation becomes better as 𝒏 → ∞. 

 

Definition of Volume:  Let S be a solid that lies between x = a and x = b.  If the cross sectional area of S in 

the plane Px, through x and perpendicular to the x-axis is A(x), where A is a continuous function, the the 

volume of S is: 

𝑽 = 𝐥𝐢𝐦
𝒏→∞

∑ 𝑨(𝒙𝒊
∗)∆𝒙 =  ∫ 𝑨(𝒙)𝒅𝒙.

𝒃

𝒂

𝒏

𝒊=𝟏

 

 

It is important to recognize when the area of a moving cross section is changing and when it is not. 

 

Example:  Show that the volume of a sphere with radius r is  𝑽 =
𝟒

𝟑
𝝅𝒓𝟑. 

Lets draw a diagram of the sphere with the center at the origin. 

 

 



 

 

If we place the sphere so that its center is at the origin, then the plane Px intersects the sphere in a circle 

whose radius (from the Pythagorean Theorem) is  𝒚 = √𝒓𝟐 − 𝒙𝟐.  So the cross-sectional area is 

 A(x) = 𝝅𝒚𝟐  (and since 𝒚 = √𝒓𝟐 − 𝒙𝟐  we can substitute) 

A(x) = 𝝅(𝒓𝟐 − 𝒙𝟐) 

 

Using the definition of volume with a = -r and b = r (limits of integrations), we have 

𝑉 = ∫ 𝐴(𝑥)𝑑𝑥

𝑟

−𝑟

 

               = ∫ 𝜋(𝑟2 − 𝑥2)𝑑𝑥

𝑟

−𝑟

 

                 = 2𝜋 ∫(

𝑟

0

𝑟2 − 𝑥2)𝑑𝑥 

          = 2𝜋 [𝑟2𝑥 −
𝑟3

3
]

0

𝑟

 

       = 2𝜋 (𝑟3 −
𝑟3

3
) 

=
𝟒

𝟑
𝝅𝒓𝟑 

 

The figure below illustrates the definition of volume when the solid is a sphere with radius r = 1.  We 

know that when r = 1, the volume of a sphere is  
4

3
𝜋(1)3 ≈ 4.18879. 

 

                                                
 



Now we consider a specific type of solid known as a solid of revolution.  Suppose f  is a continuous 

function with f(x) > 0  on an interval [a, b].  Let R be the region bounded by the graph of f, the x-axis, and 

the lines x = a and x = b.  Now revolve R around the x-axis.  As R revolves once about the x-axis, it sweeps 

out a 3 – dimensional solid of revolution.  The goal is to find the volume of this solid.  The figures below 

show an illustration of this. 

 

                                                           
Example:  Let R be the region bounded by the curve f(x) = (x + 1)2,  the x-axis, and the lines x = 0 and  

x = 2.  Find the volume of the solid of revolution obtained by revolving R about the x-axis. 

 

Below is the figure created by the given information. 

   
 

Integrating those cross-sectional areas between x = 0 and x = 2 give the volume of the solid. 

𝑉 = ∫ 𝐴(𝑥)𝑑𝑥 = ∫ 𝜋(𝑥 + 1)4𝑑𝑥

2

0

2

0

 

Let u = x + 1, then du = dx  (x = 0 → u = 1 and x = 2 → u = 3) 

= 𝜋 ∫ 𝑢4𝑑𝑢 =  

3

1

𝜋 [
𝑢5

5
]

1

3

 =    𝜋 [
243

5
−

1

5
]  =   

𝟐𝟒𝟐𝝅

𝟓
 

 

This is called the disk method. 

 

A small variation of the method above allows us to compute the volume of more complex solids.  Suppose 

that R is the region bounded by the graphs of f  and g  between x = a and x = b,  where f(x) < g(x) < 0. 

If R is revolved about the x-axis to generate a solid of revolution, the resulting solid generally has a hole 

through it.   

 

If f(x) < g(x) < 0,  then f(x)  is the outer radius, ro , and g(x) is the inner radius, ri. 

 

The cross section is the area of the entire disk minis the area of the hole.  This is called the washer 

method. 

 

A cross-sectional area perpendicular to the x-axis at the point 

0 < x < 2 is a circular disk whose radius is determined by the 

function f(x).   

 

The cross-sectional area is (using the area of a circle A = 𝜋𝑟2) 

A(x) = 𝝅(𝒇(𝒙)𝟐) =  𝝅((𝒙 + 𝟏)𝟐)𝟐 = 𝝅(𝒙 + 𝟏)𝟒 



𝑨(𝒙) = 𝝅(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐) =  𝝅(𝒇(𝒙)𝟐 − 𝒈(𝒙)𝟐) 

 

Let f  and g  be continuous functions with f(x) < g(x) < 0  on [a, b].  Let R be the region bounded by  

y = f(x) and y = g(x), and the lines x = a and x = b.  When R is revolving about the x-axis, the volume of 

the resulting solid of revolution is: 

𝑽 = ∫ 𝝅(𝒇(𝒙)𝟐 − 𝒈(𝒙)𝟐)𝒅𝒙

𝒃

𝒂

 

Example:  The region R is bounded by the graphs 𝒇(𝒙) = √𝒙 and 𝒈(𝒙) = 𝒙𝟐, between x = 0 and x = 1.  

What is the volume of the solid that results when revolving R about the x-axis? 

 

First plot the functions to determine which is greater on the domain. 

 

 

𝐴(𝑥) =  𝜋(𝑓(𝑥)2 − 𝑔(𝑥)2)  =    𝜋 (√𝑥
2

− (𝑥2)2)  =  𝜋(𝑥 − 𝑥4).   The volume of the solid is: 

𝑉 = ∫ 𝜋(𝑥 − 𝑥4)𝑑𝑥 =   𝜋 [
𝑥2

2
−

𝑥5

5
]

0

1

 =   
𝟑𝝅

𝟏𝟎

1

0

 

 

We can also find volumes of solid by rotating about the y-axis.  The idea is similar to the one of rotating 

about the x-axis. 

 

Consider a region R  bounded by the curve x = p(y) on the right, the curve x = q(y) on the left, and the 

horizontal lines y = c and y = d. 

 

 

Note:  f(x) > g(x) on the domain [0, 1] 



The area of the cross section  𝐴(𝑦) = 𝜋(𝑝(𝑦)2 − 𝑞(𝑦)2), where  𝑐 ≤ 𝑦 ≤ 𝑑.  Notice that now everything is 

written in terms of y making y the independent variable and x the dependent variable.  Now by 

combining all of the cross-sectional areas of the solid gives us the volume. 

 
 

Let p and q be continuous functions with   𝒑(𝒚) ≥ 𝒒(𝒚) ≥ 𝟎 on [c, d].  Let R be the region bounded by  

x = p(y),  x = q(y), and the lines y = c and y = d.  When R is revolved about the y-axis, the volume of the 

resulting solid of revolution is given by: 

𝑽 = ∫ 𝝅(𝒑(𝒚)𝟐 − 𝒒(𝒚)𝟐)𝒅𝒚

𝒅

𝒄

 

Example:  Find the volume of the solid obtained by rotating the region bounded by  𝒚 = 𝒙𝟑, 𝒚 = 𝟖 and  

x = 0 about the y-axis. 

 

Graph the functions and illustrate the rotation.  Since we are revolving about the y-axis  we need to 

rewrite the function 𝒚 = 𝒙𝟑 as 𝒙 = √𝒚𝟑 =  𝒚
𝟏

𝟑. 

 

𝑉 = ∫ 𝐴(𝑦)𝑑𝑦 =   ∫ 𝜋𝑥2𝑑𝑦
8

0

8

0
   (substitue 𝒚

𝟏

𝟑 in for x) 

𝑉 = ∫ 𝜋 (𝑦
1

3)
2

𝑑𝑦
8

0
  

𝑉 = 𝜋 [
3

5
𝑦

5
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0
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𝑽 =
𝟗𝟔𝝅

𝟓
  

 

 

 

 

 

 

Volumes of solids with rotations other than the x-axis or y-axis can also be found. 

 

Example:  Find the volume of the solid generated when a region R bounded by the graph  𝒇(𝒙) = √𝒙 + 𝟏 

and the line y = 2 on the interval [0, 1] is revolved about the line y = 2 

 

Graph the given information.  The radius at any point in x would be:   r = 2 – f(x) 

 



           r = 2 – (√𝑥+1) 

           r = 2 −√𝑥 − 1 

           r = 𝟏 − √𝒙 

       

     Therefore, the volume of the solid revolved about y = 2 is 

     ∫ 𝜋(1 − √𝑥)
2

𝑑𝑥
1

0
 =   𝜋 ∫ (1 − 2√𝑥 + 𝑥)𝑑𝑥

1

0
 =  

𝝅

𝟔
 

 


