6.2 Volumes

When finding the volume of a solid we have the same problem as we had when finding the areas in the last section.

Consider the following solid, S .

We can find the volume of the solid by finding the area of the cross section of S in the plane $P_{\boldsymbol{x}}$ perpendicular to the \mathbf{x}-axis and passing through point \mathbf{x} for all \mathbf{x} in $[\mathrm{a}, \mathrm{b}]$. Notice that the corss-section area $A(x)$ will vary as x increases from a to b . Since $A(x)$ will vary, lets divide S into n "slabs" of equal width $\Delta \boldsymbol{x}$ by using the planes $P_{x_{1}}, P_{x_{2}}, \ldots$ to slice the solid. If we choose sample point $\boldsymbol{x}_{\boldsymbol{i}}^{*}$ in $\left[x_{i-1}, x_{i}\right]$, the $\boldsymbol{i}^{\boldsymbol{t h}}$ interval, we can approximate the $\boldsymbol{i}^{\boldsymbol{t h}}$ slab, $\boldsymbol{S}_{\boldsymbol{i}}$ by a cylinder with base area $\boldsymbol{A}\left(\boldsymbol{x}_{\boldsymbol{i}}^{*}\right)$ and height $\Delta \boldsymbol{x}$.

The volume of this cylinder is $\boldsymbol{A}\left(\boldsymbol{x}_{\boldsymbol{i}}^{*}\right) \Delta \boldsymbol{x} \ldots \boldsymbol{V}\left(\boldsymbol{S}_{\boldsymbol{i}}\right) \approx \boldsymbol{A}\left(\boldsymbol{x}_{\boldsymbol{i}}^{*}\right) \Delta \boldsymbol{x}$
Adding the volumes of all of the slabs give us an approximation to the total volume of the solid.

$$
V \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x
$$

The approximation becomes better as $\boldsymbol{n} \rightarrow \infty$.

Definition of Volume: Let S be a solid that lies between $x=a$ and $x=b$. If the cross sectional area of S in the plane P_{x}, through \mathbf{x} and perpendicular to the \mathbf{x}-axis is $\mathrm{A}(\mathbf{x})$, where A is a continuous function, the the volume of S is:

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x .
$$

It is important to recognize when the area of a moving cross section is changing and when it is not.
Example: Show that the volume of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.
Lets draw a diagram of the sphere with the center at the origin.

If we place the sphere so that its center is at the origin, then the plane P_{x} intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is $\boldsymbol{y}=\sqrt{\boldsymbol{r}^{2}-\boldsymbol{x}^{2}}$. So the cross-sectional area is $\mathrm{A}(\mathrm{x})=\boldsymbol{\pi} \boldsymbol{y}^{2}$ (and since $\boldsymbol{y}=\sqrt{\boldsymbol{r}^{2}-\boldsymbol{x}^{2}}$ we can substitute)
$\mathrm{A}(\mathrm{x})=\pi\left(r^{2}-x^{2}\right)$

Using the definition of volume with $\mathbf{a}=-\mathbf{r}$ and $\mathbf{b}=\mathbf{r}$ (limits of integrations), we have

$$
\begin{aligned}
V & =\int_{-r}^{r} A(x) d x \\
& =\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
& =2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \\
& =2 \pi\left[r^{2} x-\frac{r^{3}}{3}\right]_{0}^{r} \\
& =2 \pi\left(r^{3}-\frac{r^{3}}{3}\right) \\
& =\frac{\mathbf{4}}{\mathbf{3}} \boldsymbol{\pi} r^{3}
\end{aligned}
$$

The figure below illustrates the definition of volume when the solid is a sphere with radius $r=1$. We know that when $r=1$, the volume of a sphere is $\frac{4}{3} \pi(1)^{3} \approx 4.18879$.

(b) Using 10 disks, $V=4.2097$

(c) Using 20 disks, $V=4.1940$

Approximating the volume of a sphere with radius 1

Now we consider a specific type of solid known as a solid of revolution. Suppose \boldsymbol{f} is a continuous function with $f(\boldsymbol{x}) \geq \boldsymbol{0}$ on an interval $[\mathrm{a}, \mathrm{b}]$. Let R be the region bounded by the graph of f, the \mathbf{x}-axis, and the lines $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=\mathbf{b}$. Now revolve \mathbf{R} around the \mathbf{x}-axis. As R revolves once about the \mathbf{x}-axis, it sweeps out a 3 - dimensional solid of revolution. The goal is to find the volume of this solid. The figures below show an illustration of this.

Example: Let R be the region bounded by the curve $f(x)=(x+1)^{2}$, the x-axis, and the lines $x=0$ and $\mathbf{x}=2$. Find the volume of the solid of revolution obtained by revolving R about the x-axis.

Below is the figure created by the given information.

A cross-sectional area perpendicular to the x -axis at the point $0 \leq x \leq 2$ is a circular disk whose radius is determined by the function $f(x)$.

The cross-sectional area is (using the area of a circle $\mathrm{A}=\pi r^{2}$)

$$
\mathrm{A}(\mathrm{x})=\pi\left(f(x)^{2}\right)=\pi\left((x+1)^{2}\right)^{2}=\pi(x+1)^{4}
$$

Integrating those cross-sectional areas between $\mathbf{x}=\mathbf{0}$ and $\mathbf{x}=\mathbf{2}$ give the volume of the solid.

$$
V=\int_{0}^{2} A(x) d x=\int_{0}^{2} \pi(x+1)^{4} d x
$$

Let $\mathbf{u}=\mathrm{x}+1$, then $\mathrm{d} \mathbf{u}=\mathrm{dx}(\mathrm{x}=0 \rightarrow \mathrm{u}=1$ and $\mathrm{x}=2 \rightarrow \mathrm{u}=3)$

$$
=\pi \int_{1}^{3} u^{4} d u=\pi\left[\frac{u^{5}}{5}\right]_{1}^{3}=\pi\left[\frac{243}{5}-\frac{1}{5}\right]=\frac{\mathbf{2 4 2 \pi}}{\mathbf{5}}
$$

This is called the disk method.

A small variation of the method above allows us to compute the volume of more complex solids. Suppose that R is the region bounded by the graphs of f and g between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$, where $f(x) \leq g(x) \leq 0$. If R is revolved about the x-axis to generate a solid of revolution, the resulting solid generally has a hole through it.

If $f(x) \leq g(x) \leq 0$, then $f(x)$ is the outer radius, r_{o}, and $g(x)$ is the inner radius, r_{i}.

The cross section is the area of the entire disk minis the area of the hole. This is called the washer method.

$$
A(x)=\pi\left(r_{o}^{2}-r_{i}^{2}\right)=\pi\left(f(x)^{2}-g(x)^{2}\right)
$$

Let f and g be continuous functions with $f(x) \leq g(x) \leq 0$ on [a, b]. Let R be the region bounded by $\mathbf{y}=\mathrm{f}(\mathrm{x})$ and $\mathbf{y}=\mathrm{g}(\mathbf{x})$, and the lines $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=\mathbf{b}$. When R is revolving about the \mathbf{x}-axis, the volume of the resulting solid of revolution is:

$$
V=\int_{a}^{b} \pi\left(f(x)^{2}-g(x)^{2}\right) d x
$$

Example: The region R is bounded by the graphs $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}$ and $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2}$, between $\mathrm{x}=0$ and $\mathrm{x}=1$. What is the volume of the solid that results when revolving R about the x -axis?

First plot the functions to determine which is greater on the domain.

Note: $\mathrm{f}(\mathrm{x}) \geq \mathrm{g}(\mathrm{x})$ on the domain $[0,1]$
$A(x)=\pi\left(f(x)^{2}-g(x)^{2}\right)=\pi\left(\sqrt{x}^{2}-\left(x^{2}\right)^{2}\right)=\pi\left(x-x^{4}\right)$. The volume of the solid is:

$$
V=\int_{0}^{1} \pi\left(x-x^{4}\right) d x=\pi\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1}=\frac{\mathbf{3 \pi}}{\mathbf{1 0}}
$$

We can also find volumes of solid by rotating about the y-axis. The idea is similar to the one of rotating about the x -axis.

Consider a region R bounded by the curve $\mathbf{x}=\mathrm{p}(\mathrm{y})$ on the right, the curve $\mathrm{x}=\mathrm{q}(\mathrm{y})$ on the left, and the horizontal lines $\mathbf{y}=\mathbf{c}$ and $\mathbf{y}=\mathrm{d}$.

The area of the cross section $A(y)=\pi\left(p(y)^{2}-q(y)^{2}\right)$, where $c \leq y \leq d$. Notice that now everything is written in terms of \mathbf{y} making \mathbf{y} the independent variable and \mathbf{x} the dependent variable. Now by combining all of the cross-sectional areas of the solid gives us the volume.

Let p and q be continuous functions with $\boldsymbol{p}(\boldsymbol{y}) \geq \boldsymbol{q}(\boldsymbol{y}) \geq \mathbf{0}$ on [c, d]. Let R be the region bounded by $\mathbf{x}=\mathrm{p}(\mathrm{y}), \mathrm{x}=\mathrm{q}(\mathrm{y})$, and the lines $\mathrm{y}=\mathbf{c}$ and $\mathrm{y}=\mathrm{d}$. When R is revolved about the y -axis, the volume of the resulting solid of revolution is given by:

$$
V=\int_{c}^{d} \pi\left(p(y)^{2}-q(y)^{2}\right) d y
$$

Example: Find the volume of the solid obtained by rotating the region bounded by $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}, \boldsymbol{y}=\mathbf{8}$ and $\mathbf{x}=\mathbf{0}$ about the \mathbf{y}-axis.

Graph the functions and illustrate the rotation. Since we are revolving about the y-axis we need to rewrite the function $y=x^{3}$ as $x=\sqrt[3]{y}=y^{\frac{1}{3}}$.
$V=\int_{0}^{8} A(y) d y=\int_{0}^{8} \pi x^{2} d y$ (substitue $y^{\frac{1}{3}}$ in for x)
$V=\int_{0}^{8} \pi\left(y^{\frac{1}{3}}\right)^{2} d y$
$V=\pi\left[\frac{3}{5} y^{\frac{5}{3}}\right]_{0}^{8}$
$V=\frac{96 \pi}{5}$

Volumes of solids with rotations other than the \mathbf{x}-axis or \mathbf{y}-axis can also be found.

Example: Find the volume of the solid generated when a region R bounded by the graph $\boldsymbol{f}(\boldsymbol{x})=\sqrt{\boldsymbol{x}}+\mathbf{1}$ and the line $\mathbf{y}=\mathbf{2}$ on the interval $[0,1]$ is revolved about the line $\mathbf{y}=\mathbf{2}$

Graph the given information. The radius at any point in \mathbf{x} would be: $\quad r=2-f(x)$

$$
\begin{aligned}
& \mathrm{r}=2-(\sqrt{x}+1) \\
& \mathrm{r}=2-\sqrt{x}-1 \\
& \mathrm{r}=\mathbf{1}-\sqrt{\boldsymbol{x}}
\end{aligned}
$$

Therefore, the volume of the solid revolved about $\mathbf{y}=\mathbf{2}$ is
$\int_{0}^{1} \pi(1-\sqrt{x})^{2} d x=\pi \int_{0}^{1}(1-2 \sqrt{x}+x) d x=\frac{\pi}{6}$

